
Chapter 5 Linear Programming (LP)
� General constrained optimization problem:

minimize f(x)
subject to x 2 


� 
 � Rn is called the constraint set or feasible set.

� any point x 2 
 is called a feasible point

� We consider the case when f (x) is a linear function

f (x) = cTx; x = (x1; x2; :::; xn) 2 Rn

where c 2 Rn is a given constant vector, called cost coe¢ cient.

� Example: R3

f (x) = 3x1 � 4x2 + x3 = cTx; c =

24 3�4
1

35 ; x =
24x1x2
x3

35
� Consider standard convex constraint set


 = fx : Ax = b; x � 0g

� The notation x � 0 means that each component of x = [x1; :::; xn]
T

must be � 0 : xi � 0 for all i

� Example: 
 = fx : 4x1 + x2 = 5; x1 � 0; x2 � 0g
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� We can write the problem as

minimize cTx
subject to Ax = b

x � 0

� This problem is called Linear programming problem, or linear program-
ming (LP).

� In general, constraint sets involve equations and inequalities.

� Example:

minimize 3x1 + 2x2

subject to x1 � x2 � 6
x1 � 0

� Example Production scheduling

� Woodworking shop data:

Inputs Products input availability
Table Chair

labor 5 6 30
Materials 3 2 12
Production Levels x1 x2
Unit price 1 5

� Goal: schedule production to maximize revenue

� Total revenue: x1 + 5x2

� Production constraints

�Labor constraint: 5x1 + 6x2 � 30
�Materials constraint: 3x1 + 2x2 � 12
�Physical constraints: x1 � 0; x2 � 0
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� Optimization problem:

maximize x1 + 5x2

subject to 5x1 + 6x2 � 30
3x1 + 2x2 � 12
x1 � 0; x2 � 0

� (LP) in matrix form

maximize cTx

subject to Ax � b
x1 � 0; x2 � 0

A =

�
5 6
3 2

�
; b =

�
30
12

�
; c =

�
1
5

�
� Equivalent form

minimize � cTx
subject to Ax � b

x1 � 0; x2 � 0

Example: Optimal Diet

� Nutrition table:

Unit Price Vitamin Milk Eggs Daily Requirement
�1 F 3 7 45
�2 G 4 2 60

Intake x1 x2
Unit cost 2 5

� For consumers:

�Total cost: 2x1 + 5x2
�Dietary Constraints

� Vitamin F: 3x1 + 7x2 � 45
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� Vitamin G: 4x1 + 2x2 � 60
� Physical constraints: x1 � 0; x2 � 0

�Optimization problem:

minimize 2x1 + 5x2

subject to 3x1 + 7x2 � 45
4x1 + 2x2 � 60
x1 � 0; x2 � 0

� (LP) in matrix form

minimize cTx

subject to Ax � b
x1 � 0; x2 � 0

A =

�
3 7
4 2

�
; b =

�
45
60

�
; c =

�
2
5

�
�This is called Primal LP

� For sellers:

� total revenue (per customer) 45�1 + 60�2
� to compete well with milk: 3�1 + 4�2 � 2
� to compete well with egg: 7�1 + 2�2 � 5
�LP for seller:

Maximize 45�1 + 60�2

Subject to 3�1 + 4�2 � 2
7�1 + 2�2 � 5
�1; �2 � 0

�This is called dual LP.

Geometric method for LP problems in 2-D
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� Consider the production scheduling example given before:

maximize x1 + 5x2

subject to 5x1 + 6x2 � 30
3x1 + 2x2 � 12
x1 � 0; x2 � 0

� Level sets of the objective function: x1 + 5x2 = c

� Level sets are parallel lines, moving up as c increases

� The maximum value 25 is reached when the level set "exiting" the
constraint set at the corner point [0; 5]T : x1 + 5x2 = 25

� The minimum value 0 is reached when the level set "exiting" the con-
straint set at the corner point [0; 0]T : x1 + 5x2 = 0

� In fact, unless the level sets happen to be parallel to one of the edges of
the constraint set, the solution will lie on a �corner point�(or vertex).
Even if the level sets happen to be parallel to one of the edges of the
constraint set, a corner point will be an optimal solution.

� It turns out that solution of an LP problem (if it exists) always lies on
a vertex of the constraint set.

5



� Therefore, instead of looking for candidate solutions everywhere in the
constraint set, we need only focus on the vertices.

Standard form LP problems

� LP problem in standard form:

minimize cTx
subject to Ax = b

x � 0

where A is a m� n matrix, m < n;

rank (A) = m

b � 0

� Example:

� In standard form:

minimize 3x1 + 5x2 � x3
subject to x1 + 2x2 + 4x3 = 4

� 5x1 � 3x2 + x3 = 15
x1 � 0; x2 � 0; x3 � 0

�NOT in standard forms:

maximize 3x1 + 5x2 � x3
subject to x1 + 2x2 + 4x3 � 4

� 5x1 � 3x2 + x3 � 15
x1 � 0; x2 � 0

minimize 3x1 + 5x2 � x3
subject to x1 + 2x2 + 4x3 = �4

� 5x1 � 3x2 + x3 = 15
x1 � 0; x2 � 0; x3 � 0
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�The above is not standard because b1 = �4 < 0: To be standard
form, we require bi � 0:

minimize 3x1 + 5x2 � x3
subject to x1 + 2x2 + 4x3 = 4

2x1 + 4x2 + 8x3 = 8

x1 � 0; x2 � 0; x3 � 0

�The above is not standard because the matrix A2�4 has a rank of
1; not "full rank".

� All our analyses and algorithms will apply only to standard form LP
problems.

� What about other variations of LP problems?

�Any LP problem can be converted into an equivalent standard
form LP problem.

� How to convert from given LP problem to an equivalent problem in
standard form?

� If problem is a maximization, simply multiply the objective func-
tion by �1 to get minimization.

� If A not of full rank, can remove one or more rows.

� If a component of b is negative, say the ith component, multiply
the ith constraint by �1 to obtain a positive right-hand side.

� What about inequality constraints?

� add slack variables for " � " constraints

� add surplus variables for " � " constraint

� split variables for free variables

Converting to standard form: Slack variables

� Suppose we have a " � " constraint of the form:

a1x1 + a2x2 + � � �+ anxn � b
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� We can convert the above inequality constraint into the standard equal-
ity constraint by introducing a slack variable xn+1

� The above constraint is equivalent to:

a1x1 + a2x2 + � � � anxn + xn+1 = b
xn+1 � 0

Converting to standard form: Surplus variables

� Suppose we have a constraint of the form:

a1x1 + a2x2 + � � �+ anxn � b

� We can convert the above inequality constraint into the standard equal-
ity constraint by introducing a surplus variable xn+1

� The above constraint is equivalent to:

a1x1 + a2x2 + � � �+ anxn � xn+1 = b
xn+1 � 0

Converting to standard form: Nonpositive variable

� Suppose one of the variables (say, x1) has the constraint

x1 � 0

� We can convert the variable into the usual nonnegative variable by
changing every occurrence of x1 by its negative x01 = �x1

� Example: The LP problem

minimize c1x1 + c2x2 + � � �+ cnxn
subject to a1x1 + a2x2 + � � �+ anxn � an+1xn+1 = b

x1 � 0

is converted standard form

minimize � c1x01 + c2x2 + � � �+ cnxn
subject to � a1x01 + a2x2 + � � �+ anxn � an+1xn+1 = b

x01 � 0
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Converting to standard form: Free variables

� Suppose one of the variables (say, x1) does not have any constraint

� We can split x1 into its positive part and negative part by introducing
two variables u1 � 0 and v1 � 0 : x1 = u1� v1

� Example: The constraint

a1x1 + a2x2 + � � �+ anxn = b
x2 � 0; x3 � 0; � � � ; xn � 0

is equivalent to

a1 (u1 � v1) + a2x2 + � � �+ anxn = b
u1 � 0; v1 � 0; x2 � 0; x3 � 0; � � � ; xn � 0

Converting to standard form: An example

� Consider the LP problem (not in standard form)

maximize 3x1 + 5x2 � x3
subject to x1 + 2x2 + 4x3 � �4 (1)

� 5x1 � 3x2 + x3 � 15 (2)

x2 � 0
x3 � 0

� We �rst convert the maximization problem into minimization problem
by multiplying the objective function by (�1)

� Next, we introduce a slack variable x4 in the �rst constraint to convert
constraint (1) into

x1 + 2x2 + 4x3 + x4 = �4; x4 � 0

and then multiply the equation by (�1) to make the right-hand side
positive:

�x1 � 2x2 � 4x3 � x4 = 4; x4 � 0
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� Next, we introduce a surplus variable x5 to convert the second con-
straint (2) to convert it to

�5x1 � 3x2 + x3 � x5 = 15; x5 � 0

� Next, we substitute x1 with x6 � x7 in every expression

� Finally, we substitute x2 with �x02 in every expression

� The resulting standard form

minimize � 3 (x6 � x7) + 5x02 + x3
subject to � (x6 � x7) + 2x02 � 4x3 � x4 = 4

� 5 (x6 � x7) + 3x02 + x3 � x5 = 15
x02; x3; x4; x5; x6; x7 � 0

or

minimize 5x02 + x3 � 3x6 + 3x7
subject to 2x02 � 4x3 � x4 + 0x5 � x6 + x7 = 4

3x02 + x3 + 0x4 � x5 � 5x6 + 5x7 = 15
x02; x3; x4; x5; x6; x7 � 0

The matrix form is

minimize cTx
subject to Ax = b

x � 0
; x =

�
x02 x3 x4 x5 x6 x7

�T
A =

�
2 �4 �1 0 �1 1
3 1 0 �1 �5 5

�
; b =

�
4
15

�
Basic solutions

� Consider LP problem in standard form:

minimize cTx
subject to Ax = b

x � 0

where A is a m� n matrix, m < n; rank (A) = m; b � 0
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� The feasible points are those x that satisfy Ax = b and x � 0 (i.e.,
have nonnegative components).

� For m < n, there are in�nitely many points x satisfying Ax = b

REVIEW linear algebra:

� Recall there are three types of elementary row operations

1. Interchanging two rows of the matrix;

2. Multiplying one row of the matrix by a (nonzero) constant;

3. Adding a constant multiple of one row to another row.

� Pivoting about (i,j) position: using above three types of row operations
to make the entry at (i,j) position 1, and the rest entries in the jth
column zero

� To solve Ax = b using elementary row operations:

�First, we form the �augmented matrix� [A; b]

�Using Gauss-Jordan Algorithm

� [A; b] can be reduced by a sequence of elementary row operations
to a unique reduced Echelon form.

�Assume that the �rst m columns of A are linearly independent

�pivoting about (1; 1) ; (2; 2) ; :::; (m;m) position consecutively

� this will reduce [A; b] to the reduced Echelon26664
1 0 � � � 0 � � � y1
0 1 � � � 0 � � � y2
...
...
. . .

...
. . .

...
0 0 � � � 1 � � � ym

37775 = [Im ; Y; y�] ; y� =
26664
y1
y2
...
ym

37775
�Name: canonical augmented matrix
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� In particular, Ax = b has a solution

x� =

�
y�

0

�
=

26666666664

y1
y2
...
ym
0
...
0

37777777775
where y� is the last column in the above canonical augmented matrix

� Basic solution: This solution x� =
�
y�T ; 0

�T
is called a basic solution

to Ax = b

� The �rst m columns of A are called basic columns

� The �rst m variables x1; � � � ; xm are called basic variables

� The last (n�m) variables xm+1; � � � ; xn are called nonbasic variables

� In general, for any solution x�of Ax = b

� x� is called a basic solution if x� has at most m non-zero com-
ponents

� the corresponding variables (of non-zero components) are called
basic variables

� the corresponding columns in A are called basic columns that
form a basis

� For anym basic columns of A : ak1 ; ak2 ; :::; akm are linearly independent,
where 1 � k1 � k2 � ::: � km:

� Canonical augmented matrix: k1-th column is e1 = [1; 0; :::; 0]T ; k2-th
column is e2; ::; km-th column is em

[A; b] = [a1; a2; :::; an; b]!

26664
� � � 1 � � � 0 � � � 0 � � �
� � � 0 � � � 1 � � � 0 � � �
� � � 0

... 0 � � � 1 � � �
...

... � � � ... � � � ... � � �

37775
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� In this case, ak1 ; ak2 ; :::; akm are basic columns, variables associated with
basic columns, xk1 ; xk2 ; :::; xkm ; are basic variables.

� Example:

A2�4 = [a1; a2; a3; a4] =

�
1 2 3 4
5 6 7 8

�
; b =

�
6
2

�
� canonical augmented matrix is�

1 2 3 4 6
5 6 7 8 2

�
!
�

3
2

1 1
2
0 �5

�1
2
0 1

2
1 4

�
� x2 and x4 are basic variables

� a2; a4 are basic columns

� a solution x�

x� =

2664
0
�5
0
4

3775
� this x� = [0;�5; 0; 4]T is a basic solution ( m = 2)

� There are at most�
n
m

�
=

n!

m! (n�m)! basic solutions

Example Consider the equation Ax = b with

A = [a1; a2; a3; a4] =

�
1 1 �1 4
1 �2 �1 1

�
; b =

�
8
2

�
�
A b

�
=

�
1 1 �1 4 8
1 �2 �1 1 2

�
� #1 basic solution: x = [6; 2; 0; 0]T ; basic variables x1; x2; basis B =
[a1; a2]

� #2 basic solution: x = [0; 2;�6; 0]T ; basic variables x2; x3; basis B =
[a2; a3]
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� #3 basic solution: x = [0; 0; 0; 2]T ; basic variables x3; x4; basis B =
[a3; a4]

� #4 basic solution: x = [0; 0; 0; 2]T ; basic variables x1; x4; basis B =
[a1; a4]

� #5 basic solution: x = [0; 0; 0; 2]T ; basic variables x2; x4; basis B =
[a2; a4]

� Note that x = [3; 1; 0; 1]T is a solution, but it is not basic

� To �nd the last basic solution, we set x2 = x4 = 0

� the solution of form x = [x1; 0; x3; 0]
T for Ax = b is equivalent to�

1 �1
1 �1

� �
x1
x3

�
=

�
8
2

�
� its augmented matrix �

1 �1 8
1 �1 2

�
� is inconsistent. So there are only �ve basic solutions

Basic Feasible Solutions (BFS)

� Consider the constraints of the LP problem: Ax = b; x � 0

� Recall de�nition of basic solution

� If x is a basic solution to Ax = b and it also satis�es x � 0, we call it
a basic feasible solution (BFS)

� Note that a basic solution x is feasible i¤ every basic variable is � 0.

� If at least one of the basic variables is = 0, we say that the BFS is
degenerate

� We henceforth assume nondegeneracy (i.e., all the BFSs we consider
are not degenerate)
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� This makes the derivations simpler. The degenerate case can be han-
dled similarly.

� In Example above:

� x = [6; 2; 0; 0]T is a BFS

� x = [0; 0; 0; 2]T is a degenerate BFS

� x = [0; 2;�6; 0]T is a basic solution, but not feasible

� x = [3; 1; 0; 1]T is feasible, but not basic

Geometric view

� Geometrically, a BFS corresponds to a �corner�point (vertex) of the
constraint set

� Example: Consider the constraint Ax = b; x � 0, where

A =
�
1; 2; 3

�
; b = [6]:

� Feasible set the portion of the plane x1 + 2x2 + 3x3 = 6 in the �rst
octant

� The BFSs are: [6; 0; 0]T ; [0; 3; 0]T , and [0; 0; 2]T

� Note that the BFSs are just the vertices of the constraint set.

� In general, we can think (geometrically) of a BFS as a vertex of the
constraint set.

Optimal solutions

� A feasible point that minimizes the objective function is called an op-
timal feasible solution

� A BFS that is also optimal is called an optimal basic feasible so-
lution
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Fundamental Theorem of LP

� Consider an LP problem in standard form.

1. If there exists a feasible solution, then there exists a BFS;

2. If there exists an optimal feasible solution, then there exists an
optimal BFS.

Or, more informally, ...

� If the feasible set is nonempty, then it has a vertex

� If the problem has a minimizer (optimal solution), then one of the
vertices is a minimizer

Consequences of FTLP

� Suppose we are given an LP problem. Assume that a solution exists.

� To �nd the solution, it su¢ ces to look among the set of BFSs.
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� There are only a �nite number of BFSs; in fact, at most�
n
m

�
=

n!

m! (n�m)! basic solutions

� Therefore, the FTLP allows us to transform the original problem (in-
�nite number of feasible points) to a problem over a �nite number of
points

� However, the total number of BFSs may of course be very large.

� For example, if m = 5 and n = 50,
�
50
5

�
= 2118 760

� The brute force approach of exhaustively comparing all the BFSs is
impractical

� Therefore, we need a more computationally e¢ cient method to �nd the
minimizer among the possible BFSs

� Simplex method: an organized way of going from one BFS to another
to search for the global minimizer.

Simplex Algorithms
� The FTLP allows us to limit search of optimal solutions to a �nite
number of points (BFSs).

� Simplex method: an organized way of going from one BFS to another
to search for the global minimizer.

� The method uses numerical linear algebraic techniques.

� Sometimes, to avoid confusion, we use boldface letters for vectors

Simplex method
Basic idea

� Start with an initial basis corresponding to a BFS
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� We then move to an adjacent BFS (adjacent vertex) in such a way that
the objective function decreases

� If the stopping criterion is satis�ed, we stop; otherwise, we repeat the
process.

� We move from one basic solution to an adjacent one:

� if ap leaves the basis and aq enters the basis, we pivot about the
(r; q) position of the canonical augmented matrix26666666664

� � � � � � p-th column � � � � � �
� � � � � � ... � � � � � �
� � � � � � 0 � � � � � �

r-th row � � � 1 � � � � � �
� � � � � � 0 � � � � � �
� � � � � � ... � � � � � �
� � � � � � 0 � � � � � �

37777777775
!

26666666664

� � � � � � � � � q � th column � � �
� � � � � � � � � ... � � �
� � � � � � � � � 0 � � �
� � � � � � � � � 1 � � �
� � � � � � � � � 0 � � �
� � � � � � � � � ... � � �
� � � � � � � � � 0 � � �

37777777775
� xp is D.V.(departing variable)

� xq is E.V. (entering variable)

�Example: a2; a4 form the original basis. To replace a2 by a1; we
need to pivot about (1; 1) (p = 2; r = 1; q = 1): The new basis is
fa1; a4g �

1� 1 3 0 8
�2 0 �1 1 2

�
!
�
1 1 3 0 8
0 2 51 1 18

�
x2 is D.V.; x1 is E.V.

� Two questions:

1. How do we ensure that the adjacent basic solution we move to is
feasible?

� In other words if we are given xq E.V., how do we choose a
D.V. xp such that if we pivot about the (r; q) element ((r; p)
is a pivot), the resulting rightmost column of the canonical
augmented matrix will have all nonnegative elements?
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2. How do we choose E.V. xq to ensue the objective function at the
new basic solution is smaller the previous value?

Maintain feasibility (optional): Choosing leaving variable xp

� Feasibility: the last column � 0

� Given: A and b.

� Suppose we have a set of basic variables corresponding to a BFS.

� For simplicity, assume it is fx1; :::; xmg, the corresponding basis is
fa1; :::; amg

� Suppose we now want to choose xq as E:V:, where q > m.

� One of the vectors ap, 1 � p � m, must leave the basis.

� Suppose the canonical augmented matrix for the original basis is:

[A; b]!

26664
1 0 � � � 0 y1;m+1 � � � y1;n y1;0
0 1 � � � 0 y2;m+1 � � � y2;n y2;0
...
...

...
. . .

... � � � ...
...

0 0 � � � 1 ym;m+1 � � � ym;n ym;0

37775
� Note yi0 � 0 due to feasible assumption

� If, for example, am+1 replaces a1 by pivoting bout (1;m+ 1)

� the resulting canonical augmented matrix

[A; b]!

26664
1

y1;m+1
0 � � � 0 1 � � � y1;n

y1;m+1

y1;0
y1;m+1

0 1 � � � 0 y2;m+1 � � � y2;n y2;0
...

...
...

. . .
... � � � ...

...
0 0 � � � 1 ym;m+1 � � � ym;n ym;0

37775

!

2666664
1

y1;m+1
0 � � � 0 1 � � � y1;n

y1;m+1

y1;0
y1;m+1

� y2;m+1
y1;m+1

1 � � � 0 0 � � � y2;n �
y1;n
y1;m+1

y2;m+1 y2;0 �
y1;0

y1;m+1
y2;m+1

...
...

...
. . .

... � � � ...
...

ym;m+1
y1;m+1

0 � � � 1 0 � � � ym;n �
y1;n
y1;m+1

ym;m+1 ym;0 �
y1;0

y1;m+1
ym;m+1

3777775
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� the last column is 266664
y10

y1m+1

y20 � y10
y1m+1

y2m+1
...

ym0 � y10
y1m+1

ymm+1

377775
� In general, if aq replaces ap by pivoting about (r; q) ((r; p) is a pivot),
the last column of new canonical augmented matrix will be266666664

...
yr;0
yr;q

r-th
...

y
i;0
� yr;0

yr;q
yi;q i-th

...

377777775
� i.e.,

� r�th element is yr;0
yr;q

� all other i�th element is y
i;0
� yr;0
yr;q
yi;q for i 6= p

� If yr;q < 0; then the feasible set is unbounded

� Hence, to ensue feasibility, we have to choose r such that yr;q > 0; and
for all i = 1; 2; :::;m;

y
i0
� yr;0
yr;q
yi;q = yi;q

�
y
i;0

yi;q
� yr;0
yr;q

�
� 0 =)

r = argmin

�
y
i;0

yi;q
: i = 1; 2; :::;m

�
� We may divide i-th component in q-th column into i-th component in
the last column to create "division"26664

y1;0
y2;0
...
ym;0

37775�
26664
y1;q
y2;q
...
ym;q

37775 =
26664
y1;0=y1;q
y2;0=y2;q

...
ym;0=ym;q

37775
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� In summary, to maintain feasibility, the leaving variable xp must be the
position in the above "quotation" vector with the smallest value, i.e.,

yr;0
yr;q

�
y
i;0

yi;q

Maintain optimality (optional): Choosing entering variable
xq

� Finding a �better�adjacent BFS

� Once we select aq; we know how to pick ap to leave the basis

� The question is how to choose column aq to enter the basis?

� The goal is that the new (adjacent) BFS should have lower objective
function value

� Suppose the canonical augmented matrix for the original basis is:

[A; b] =

26664
1 0 � � � 0 y1;m+1 � � � y1;n y1;0
0 1 � � � 0 y2;m+1 � � � y2;n y2;0
...
...

...
. . .

... � � � ...
...

0 0 � � � 1 ym;m+1 � � � ym;n ym;0

37775
� basic cost function coe¢ cients are those associated with the basic vari-
ables

c0 = [c1; c2; � � � ; cm]

� The objective function for the BFS x� = [y10 ; � � � ; ym0; 0; � � � 0]
T is

z0 = c
Tx� = cT0 x

� =

mX
i=1

ciyi0

� Now, consider a new basis where aq enters the basis and ap leaves the
basis.

� The new BFS is (with r = p in this case)

x�� =

�
y1;0 �

yr;0
yr;q
y1;q; � � � 0; � � � ; ym;0 �

yr;0
yr;q
ym;q; 0; � � � 0;

yr;0
yr;q
; 0 � � �

�

21



� The objective function for the new BFS is

z = cTx�� =

mX
i=1;i6=r

ci

�
y
i0
� yr0
yrq
yiq

�
+ cq

yr0
yrq

=

mX
i=1

ci

�
y
i0
� yr0
yrq
yiq

�
+ cq

yr0
yrq

=

mX
i=1

ciyi0 �
mX
i=1

ci
yr0
yrq
yiq + cq

yr0
yrq

= z0 +

 
cq �

mX
i=1

ciyi;q

!
yr;0
yr;q

� Note that the q-th column of A is26664
y1;q
y2;q
...
ym;q

37775
� Hence q-th component in cT0A is

zq =
mX
i=1

ciyi;q

� we have
z = z0 + (cq � zq)

yr;0
yr;q

� Hence if (cq � zq) < 0, we conclude z < z0; i.e., the objective function
for the new BFS is smaller

� De�ne

ri =

�
0 for i = 1; :::;m (basic)

ci � zi for i = m+ 1; :::; n (nonbasic)

� we call ri Relative cost coe¢ cients (RCC) for xi

z = z0 + rq
yr;0
yr;q
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� Note: the RCC for a basic variable is always 0.

� If rq < 0, then the new BFS is better.

� The smaller rq, the better the new BFS

� In general, if x is any feasible solution, we can derive the equation

z = cTx = z0 +
nX

i=m+1

rixi

� RCC (Relative cost coe¢ cients) vector r is

r = [r0; r2; :::; rn]
T = cT � cT0A

� Optimality conditions: r = cT � cT0A � 0:

� This leads to

Theorem A BFS is optimal if and only if the corresponding RCC values
(components of cT � cT0A ) are all � 0:

� In summary, we choose a variable xq that has the most negative RCC
value as the entering variable.

� The Simplex Algorithm

1. Initialization: Given an initial BFS and its canonical augmented ma-
trix.

2. Calculate the RCCs ( cT � cT0A ) corresponding to the nonbasic vari-
ables.

3. If rj > 0 all j, then STOP� the current BFS is optimal.

4. Otherwise, select a q such that rq < 0 is the most negative.

5. If in the qth column aq; no element yiq > 0, then STOP� the problem
is unbounded; else, calculate r = argminfyi0=yiq : yiq > 0g.
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6. Update canonical augmented matrix by pivoting about the (r; q) ele-
ment.

7. Go to step 2.

Simplex tableau

� We design a speci�c algorithm to compute optimal solutions

� We focus on the standard form:

minimize: z = cTx

subject to: Ax = b; x � 0;

rank (A) = m; b > 0

� Simplex tableau

� Suppose that we already know one set of basic variables x0: Let
c0 be the basic cost coe¢ cient in c associated with basic variable
x0: For instance, if x0 = (x 2; x5; x8) be the set of basic variables,
then cT0 = [c2; c5; c8] :

�simplex tableau

xT

cT

x0 c0 A b
r = cT � cT0A �cT0 b

where the second column from the left (c0) and the second row
from the top (cT ) are for convenience in calculating the last row,
and can be deleted from the �nal tableau:

xT

x0 A b
cT � cT0A �cT0 b
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Example: Consider

minimize: f (x1; x2) = �120x1 � 80x2
subject to: 2x1 + x2 � 6

7x1 + 8x2 � 28:

� with the standard form

minimize: s = �120 (y1 � z1)� 80 (y2 � z2)
subject to: 2 (y1 � z1) + (y2 � z2) + w1 = 6

7 (y1 � z1) + 8 (y2 � z2) + w2 = 28
y1; y2; z1; z2; w1; w2 � 0

� the initial feasible solution

x� =

26666664
y1
z1
y2
z2
w1
w2

37777775 =
26666664
0
0
0
0
6
28

37777775 :

� Thus, basic variables and basic cost coe¢ cients:

x0 =

�
w1
w2

�
; c0 =

�
0
0

�
�

cT � cT0A = cT

� simplex tableau is

y1 z1 y2 z2 w1 w2
�120 120 �80 80 0 0

w1
w2

0
0

2 �2 1 �1 1 0
7 �7 8 �8 0 1

6
28

�120 120 �80 80 0 0 0
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� the �nal simplex tableau is

y1 z1 y2 z2 w1 w2
w1
w2

2 �2 1 �1 1 0
7 �7 8 �8 0 1

6
28

�120� 120 �80 80 0 0 0

Simplex method

� The simplex algorithm moves the initial feasible but non-optimal so-
lution to an optimal solution while maintaining feasibility through the
iterative procedure.

� The goal is to obtain optimality condition, i.e., the last row (except for
the very last element) are all non-negative.

step 1. Locate the most negative number in the bottom row of the simplex
tableau, excluding the last column. The variable associated with this
column is E.V. We also call it the work column. If more than one
candidate for the most negative numbers exist, pick any one.

step 2. Form ratios by dividing each positive number in the working col-
umn, excluding the last row, into the element in the same row and
last column. Designate the element in the work column that yields the
smallest ration as the pivot element. The basic variable associated
with this pivot element is D.V. If no element in the work column is
positive, stop. The problem has no solution.

step 3. Pivoting about the pivot element: Use elementary row operations to
convert the pivot element to 1 and then to reduce all other elements in
the work column to 0:

Step 4. Swap E.V. with D.V. Replace the variable in the pivot row and the
�rst column by the variable in the �rst row and work column. The new
�rst column is the current set of basic variables.

Step 5. Repeat Step 1 through Step 4 until there are no negative numbers in
the last row, excluding the last column. The basic feasible solution
derived from the very last set of variable is a minimal point: assign
to each basic variable (variables in the �rst column) the number in
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the same row and last column, and all others are zero. The negative
number of the number in the last row and last column is the minimum
value.

Example: Consider the example above with the standard form copied
below:

y1 z1 y2 z2 w1 w2
w1
w2

2� �2 1 �1 1 0
7 �7 8 �8 0 1

6
28

�120 120 �80 80 0 0 0

Solution:

� Step 1. The work column is the �rst in the middle (-120 is the most
negative).

� Step 2. The ratios are�
6
28

�
�
�

2
7

�
=

�
3
4

�
:

So the element 2� is the pivot. w1 is D.V. and y1 is E.V.

� Step 3. We perform row operations to reduce to the following updated
simplex tableau:

y1 z1 y2 z2 w1 w2
y1
w2

1 �1 1=2 �1=2 1=2 0
0 0 9=2�� �9=2 �7=2 1

3
7

0 0 �20� 20 60 0 360

The basic variable w1 is replaced by y1:

� Now, in the updated tableau, the basic variables are y1 and w2; and the
updated basic feasible solution is y1 = 3; w2 = 7; all others are zero.

� We next repeat the same steps: since there is one negative number
�20� in the last row, the work column is24 1=2

9=2
�20

35
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and the ratios are�
3
7

�
�
�
1=2
9=2

�
=

�
6
14=9

�
=

�
6
1:56

�
� Therefore, the pivot is the one with the largest ratio: 9=2��:

� w2 is D.V. and y2 is E.V.

� We now perform row operations to get updated simplex tableau: piv-
oting by �rst divided by 9=2

y1 z1 y2 z2 w1 w2
y1
w2

1 �1 1=2 �1=2 1=2 0
0 0 1 �1 �7=9 2=9

3
14=9

0 0 �20� 20 60 0 360

� and then reduce all other elements in the work column to zero

y1 z1 y2 z2 w1 w2
y1
w2

1 �1 0 0 1=2 + (7=9) (1=2) � (2=9) (1=2)
0 0 1 �1 �7=9 2=9

3� (14=9) (1=2)
14=9

0 0 0 0 60� 140=9 40=9 360 + 14� 20=9

� simplify and replace w2 by y2, we obtain the updated simplex tableau:

y1 z1 y2 z2 w1 w2

y1
y2

1 �1 0 0
8

9
�1
9

0 0 1 �1 �7=9 2=9

20

9
14=9

0 0 0 0
400

9
40=9

3520

9

� Since there is no negative number in the last row, we are done. Optimal
solution:

�
y1
y2

�
=

�
20=9
14=9

�
;

2664
z1
z2
w1
w2

3775 = 0; minimal value = �35209 � �391: 11
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� Now, let go back to the original optimization problem:

minimize: f (x1; x2) = �120x1 � 80x2
subject to: 2x1 + x2 � 6

7x1 + 8x2 � 28:

� Recall that x1 = y1 � z1; x2 = y2 � z2: Thus, the �nal solution:

f (x1; x2) attains the minimal value of �
3520

9
� �391: 11

when x1 =
20

9
; x2 =

14

9
:

Arti�cial LP

� The simplex method requires an initial basis.

� How to choose an initial basis?

� Brute force: arbitrarily choose m basic columns and transform the
augmented matrix for the problem into canonical form. If rightmost
column is positive, then we have a legitimate (initial) BFS. Otherwise,
try again.

� Potentially requires
�
n
m

�
tries, and tries, and is therefore not practical

� Consider the standard form LP

minimize: z = cTx

subject to: Ax = b; x � 0;

rank (A) = m; Am�n; b � 0

� De�ne the associated Arti�cial LP:

minimize: y1 + y2 + � � �+ ym

subject to: [A; Im]

�
x
y

�
= b�

x
y

�
� 0
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� where y = [y1; y2; � � � ; ym]T is called the vector of arti�cial variables.

� Note that the Arti�cial LP has an obvious initial BFS�
0
b

�
� we can proceed with the simplex algorithm to solve the Arti�cial LP

� Note that for y � 0
y1 + y2 + � � �+ ym � 0

and the strict inequality holds if one of yi > 0

� So if the minimum value of the Arti�cial LP = 0; then yi must be
non-basic, i.e., yi = 0

� Proposition 16.1: The original LP problem has a BFS if and only if
the associated arti�cial problem has an optimal feasible solution with
objective function value zero. In this case, the optimal solution for the
arti�cial LP serves as a BFS for the original LP

Two-phase simplex method:

� Phase I: solve the arti�cial problem using simplex method

� Phase II: use the BFS resulting from phase I to initialize the simplex
algorithm to solve the original LP problem.
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Example 16.4 Consider

minimize: 2x1 + 3x2

subject to: 4x1 + 2x2 � 12
x1 + 4x2 � 6

x1; x2 � 0

Solution:

� Standard form

minimize: 2x1 + 3x2

subject to: 4x1 + 2x2 � x3 = 12
x1 + 4x2 � x4 = 6
x1; :::; x4 � 0

� There is no obvious feasible solution.

� Phase I: Solve

minimize: x5 + x6

subject to: 4x1 + 2x2 � x3 + x5 = 12
x1 + 4x2 � x4 + x6 = 6
x1; :::; x6 � 0

� x� = [0; 0; 0; 0; 12; 6] is an obvious BFS

� simples tableau

x1 x2 x3 x4 x5 x6
x5
x6

4 2 �1 0 1 0
1 4 � 0 �1 0 1

12
6

� 5 �6� 1 1 0 0 �18

� pivoting position is (2; 2) : x6 is D.V., x2 is E.V.
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�Updated tableau:

x1 x2 x3 x4 x5 x6

x5
x2

7

2

�
0 �1 1

2
1 �1

2
1

4
1 0 �1

4
0

1

4

9
3

2

� 7
2
� 0 1 �1

2
0

3

2
�9

�Next, pivoting about (1; 1) : x5 is D.V., x1 is E.V.

� updating

x1 x2 x3 x4 x5 x6

x1
x2

1 0 �2
7

1

7

2

7
�1
7

0 1
1

14
�2
7
� 1
14

2

7

18

7
6

7
0 0 0 0 1 1 0

�Done: minimum value = 0. It produced a BFS [x1; x2; x3; x4] =�
18

7
;
6

7
; 0; 0

�
� Phase II: we can obtain the simplex tableau for the original LP imme-
diately from above:

� Deleting two arti�cial variable columns, then replace the last row by
cT � cT0A :

�
cT = [2; 3; 0; 0] ; cT0 = [2; 3]

A =

264 1 0 �2
7

1

7

0 1
1

14
�2
7

375
cT � cT0A =

�
0 0

5

14

4

7

�
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� So the simplex tableau for the original LP :

x1 x2 x3 x4

x1
x2

1 0 �2
7

1

7

0 1
1

14
�2
7

18

7
6

7

0 0
5

14

4

7
�54
7

� It is already optimal.

� The solution is x =
�
18

7

6

7
0 0

�T
; f =

54

7

Homework:

1. A cereal manufacturer wishes to produce 1000 pounds of a cereal that
contains exactly 10% �ber, 2% fat, and 5% sugar (by weight). The
cereal is to be produced by combining four items of raw food material
in appropriate proportions. These four items have certain combinations
of �ber, fat, and sugar content, and are available at various prices per
pound, as shown below:

The manufacturer wishes to �nd the amounts of each of the above items
to be used to produce the cereal in the least expensive way. Formulate
the problem as a linear programming problem. What can you say about
the existence of a solution to this problem?

2. Solve the following linear program graphically:
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3. Use the simplex method to solve the following linear program:

4. Convert the following problem to standard form and then solve it using
the simplex method:

5. From textbook: #5.8, 5.12, 5.13, 5.16 (you may combine these four
problems into one with several parts)
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